• Users Online: 315
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 5  |  Issue : 1  |  Page : 21-24

Correlation between central venous pressure and peripheral venous pressure in medical intensive care unit patients


1 Department of Medicine, Faculty of Medicine, University of Benghazi, Benghazi Medical Centre, Benghazi, Libya
2 Department of Medicine, Faculty of Medicine, University of Benghazi, Hawari General Hospital, Benghazi, Libya

Correspondence Address:
Dr. Mohamed A I. Hamedh
Department of Medicine, Faculty of Medicine, University of Benghazi, Benghazi
Libya
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/LJMS.LJMS_72_19

Rights and Permissions

Introduction: Central venous pressure (CVP) is a hemodynamic variable commonly used in the intensive care setting to estimate right arterial pressure for evaluation and monitoring a patient's volume status. Risks such as infection, arterial puncture, hematoma, and pneumothorax associated with central venous cannulation can outweigh its benefits. This study was undertaken to determine if peripheral venous pressure (PVP) predicts CVP in medical intensive care unit (ICU) patients. Materials and Methods: This study was conducted on patients admitted to the medical ICU at AlJamhoriya Teaching Hospital in the period from January to September 2009. Sixty-six patients (aged 40–70 years) who were required a central venous line (CVL) were included prospectively in the study. CVP measured through internal jugular vein or subclavian vein by three ways CVL set insertion; and CVL placement was confirmed by chest X-ray. We used the manometers for the measurement of PVP; and 66 paired recordings of CVP and PVP were made. The correlation and Bland-Altman analysis of agreement were performed. Results: The mean (standard deviation [SD]; range) CVP was 11.3778 cmH2O (±5.6; −1.0–27.0); the mean PVP was 15.80 cmH2O (±5.9; 0.0–33.0); offset (bias) of PVP > CVP was 4.42 cmH2O with SD ± 3.62. The correlation of PVP on CVP was r = 0.8059, ( r2 = 0.65), P < 0.0001. The 95% confidence intervals for the bias were 3.5352–5.3133 cmH2O. In the Bland-Altman analysis, lower and upper limits of agreement (95% LOA) were 2.7 (4.43–−7.20) and 11.63 (4.4–7.2) cmH2O. Four out of 66 points were outside the LOA. The dashed zero lies between the LOA. Conclusion: Measurement of PVP from both antecubital area and dorsum of the hand correlated with CVP measurement with acceptable agreement. PVP measurement may be a noninvasive alternative way for estimating CVP.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed326    
    Printed0    
    Emailed0    
    PDF Downloaded253    
    Comments [Add]    

Recommend this journal